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Abstract—1In this paper, we propose a novel universal framework
for salient object detection, which aims to enhance the performance
of any existing saliency detection method. First, rough salient
regions are extracted from any existing saliency detection model
with distance weighting, adaptive binarization, and morphological
closing. With the superpixel segmentation, a Bayesian decision
model is adopted to refine the rough saliency map to obtain a
more accurate saliency map. An iterative optimization method
is designed to obtain better saliency results by exploiting the
characteristics of the output saliency map each time. Through the
iterative optimization process, the rough saliency map is updated
step by step with better and better performance until an optimal
saliency map is obtained. Experimental results on the public
salient object detection datasets with ground truth demonstrate
the promising performance of the proposed universal framework
subjectively and objectively.

Index Terms—Iterative optimization, salient object detection,
universal framework, visual attention.

I. INTRODUCTION

ISUAL attention, a cognitive process to select the visu-
V ally significant information from the natural scenes, is an
important characteristic of the human visual system. When ob-
serving the natural image, human beings tend to focus on the
salient regions rather than other irrelevant surrounding regions
in the scene [1], [2]. There are two mechanisms in visual at-
tention: bottom-up and top-down mechanisms [3]. Bottom-up
attention mechanism is stimulus-driven and involuntary, while
top-down attention mechanism is task-driven and voluntary. Re-
cently, visual attention modeling has become a hot topic and has
been widely used in various applications such as image retrieval
[4], [5], smart video presentation [6], image compression [7],
image retargeting [8], object recognition [9], sensation enhance-
ment [10], etc. Although great progress has been made in the
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research area of visual attention, it still remains one of the most
important and challenging issues in the fields of image analysis,
pattern recognition and computer vision.

By simulating visual attention mechanism to perceive and re-
sponse to visual stimuli, a saliency detection algorithm usually
generates a saliency map for a given image where the value
of each pixel indicates the degree this pixel stands out from
the image. Early saliency detection methods mainly focus on
simulating movements of human eyes to predict human fixation
locations. Eye-tracking datasets are usually used to evaluate
the performance of these methods. One of the classical bio-
logically plausible models of visual attention was proposed by
Itti et al., which is also deemed as one of the most influential
saliency detection models [11]. In [11], Itti ef al. calculated
multi-scale center-surrounding differences based on three fea-
tures including intensity, color, and orientation to obtain three
feature maps. These three feature maps are combined to gener-
ate the final saliency map. Similarly, Le Meur et al. proposed
a saliency detection model based on a coherent psychovisual
space from which several feature maps are combined to calcu-
late the saliency map for images [12]. By extending the model
in [11], Harel et al. proposed a saliency detection model based
on a Markov chain on the full-connected map and a graph-based
dissimilarity measure [13]. The computational model of visual
attention in [14] is derived from the information maximization
principle. The average transmitting information is computed
by site entropy rate for saliency measure. In [15], Guo et al.
proposed a multi-resolution spatiotemporal saliency detection
model based on the principle of phase spectrum of Fourier trans-
form (PFT). Schauerte and Stiefelhagen combined and extended
several previous works on spectral saliency detection [16]. In
[17], Li et al. proposed a saliency detection model based on
statistical prior knowledge learned from millions of images.

In research of computer vision, many studies focus on de-
tecting salient objects rather than human gaze fixations. It was
suggested in [18] that early saliency has an indirect effect on
attention through recognized objects, namely, human eyes are
attracted by salient objects rather than a series of isolated fix-
ation points. The salient objects generally stand out relative to
their surrounding regions. The task of the salient object detec-
tion is to extract the most interesting object/objects in a scene.
Accordingly, various salient object detection methods based on
feature extraction from salient patches, blocks, regions or ob-
jects have been proposed. In [19], Liu et al. proposed a salient
object detection algorithm, in which the features of multi-scale
contrast, center-surround histogram, and color spatial distribu-
tion from images are extracted locally, regionally, and globally.
A conditional random field (CRF) is used on these features for
salient object detection in visual scenes. Jiang et al. utilized the
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supervised learning approach to map the regional feature vector
to a saliency score and then fused the saliency scores across mul-
tiple levels to generate the saliency map [20]. In [21], Achanta
et al. built one large-scale saliency object database and calcu-
lated the saliency map for images by DoG filters. In [22], Rahtu
et al. applied a sliding window to measure saliency based on
a rigorous statistical formulation and segmented salient object
from the background through the CRF model. Gopalakrishnan
et al. computed color saliency based on spatial distribution of
color features in the image space, and orientation saliency based
on the global and local behavior of the different orientations,
respectively [23]. The final module in that study predicts the ap-
propriateness of the two saliency maps and selects the one that
leads to the correct identification of the salient region. Liu et al.
proposed a nonparametric saliency detection model based on
kernel density estimation (KDE) [24], [25]. The saliency map is
obtained through combining saliency measures of KDE models
and color likelihood measures of pixels. Taking both local and
global contrast into account, Goferman et al. built a content-
aware saliency detection model for salient region extraction
[26]. Cheng et al. introduced a global contrast based method
to produce region-based contrast maps using color statistics of
the input image [27]. In [28], Gopalakrishnan et al. extracted
salient regions through random walks on a graph modeled by
color and orientation features. Both global and local saliency
information are captured by random walks on a complete graph
and a k-regular graph. In [29], Liu et al. proposed a spatiotempo-
ral saliency model based on superpixels. The superpixel-level
temporal saliency and spatial saliency are computed respec-
tively and then derive corresponding pixel-level saliency maps.
The final spatiotemporal saliency map is obtained from pixel-
level temporal and spatial saliency maps through an adaptive fu-
sion method. Perazzi et al. suppressed the background through
uniqueness and distribution contrast of decomposed basic com-
pactness, and then assigned saliency value to each pixel [30]. Li
and Yu proposed a visual saliency model based on multiscale
deep features [31]. The multiscale deep features are extracted
using deep convolutional neural networks, and multiple saliency
maps for different levels are aggregated to obtain the final result.

Besides the salient region extraction in the spatial domain,
some studies extract salient regions in images by transform do-
main analysis. Hou and Zhang utilized the concept of spectral
residual to build a saliency detection model [32]. They extracted
the spectral residual through analyzing the log-spectrum of the
image. In [33], Li et al. proposed to detect salient objects in
images based on a scale-space analysis of the amplitude spec-
trum. The saliency map is generated by reconstructing the two-
dimensional (2-D) signal using the original phase and the am-
plitude spectrum. The hypercomplex Fourier transform is used
to replace the standard Fourier Transform for spectrum scale-
space analysis. Fang et al. proposed a saliency detection model
based on the human visual sensitivity and amplitude spectrum
of quaternion Foutier transform (QFT) [34]. The saliency value
is calculated by differences between the QFT amplitude spec-
trum of patches and the visual impacts for these differences
determined by the human visual sensitivity. Imamoglu et al. de-
tected salient object utilizing low-level features obtained from
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the wavelet transform domain. Various feature maps are gener-
ated by IWT in various scales and used to form the final saliency
map [35]. In [36], Fang et al. calculated saliency in the com-
pressed domain. The features of color, intensity and texture are
extracted from DCT coefficients in the JPEG bit-stream. The
saliency of each DCT block is measured through Hausdorff
distance calculation and feature map fusion.

As introduced above, there is a number of saliency detec-
tion models proposed for various multimedia applications. Dif-
ferent from existing saliency detection studies which aim to
design a new method for saliency detection, we propose a uni-
versal framework to improve the performance of any existing
saliency detection model based on the rough saliency map from
the saliency detection model. Given any existing saliency detec-
tion model, we first extract the rough saliency map from an input
image. By using the rough saliency map as the prior knowledge,
a Bayesian decision model is built to compute a more accurate
saliency map for the image. An iterative optimization process
is designed to calculate the better saliency map for salient ob-
ject detection at each time. Through the iterative optimization
process, the rough saliency map is updated step by step with
better performance until an optimal saliency map is obtained.
Experimental results demonstrate that the proposed universal
framework can obtain much performance improvement over the
existing saliency detection models.

The rest of the paper is organized as follows. Section II
introduces the proposed method in detail. Experimental re-
sults are presented in Section III. Finally, Section IV gives the
conclusion.

II. PROPOSED METHOD

The block diagram of the proposed universal framework is
presented in Fig. 1. First, with the operations of distance weight-
ing, adaptive binarization, and morphological closing, the rough
salient regions are extracted in the saliency map from any
saliency detection method. Then the rough salient region and
the superpixels are utilized to generate a more accurate saliency
map based on Bayesian decision theory. Finally, an iterative op-
timization process is designed to calculate the optimal saliency
map for the input image.

A. Rough Salient Region Extraction

In this section, we introduce the process to extract the rough
salient region, which is the basic process of our approach. The
saliency map calculated by any existing method is utilized as a
prior saliency map to extract the rough salient region.

In the proposed universal framework, the more accurate the
rough salient region is, the better it is for the saliency com-
putation under the Bayesian decision model. The rough salient
region with high accuracy is highly desirable. Here, we use
distance weighting, adaptive binarization, and morphological
closing operation to extract the rough salient region based on
the prior saliency map of an input image.

Itis well known that human beings tend to pay more attention
to the center of the scene than the surrounding regions when
viewing visual scenes on a display [37]. Based on this prior
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Fig. 1. Block diagram of the proposed universal framework.

knowledge, we first conduct distance weighting on the prior
saliency maps according to the distance from the image center.
The distance weighting is calculated as

Iwy) = I (2,9) - exp (%’) m

where Iy (z,y) indicates the pixel values of the prior saliency
maps; I(x,y) indicates the pixel values of the saliency maps
after distance weighting; o denotes the distance between the
image center and the farthest pixels, expressed as

wH 2 h\*
= — - 2
a=1/(3) + (2> @)
where w and h are the width and height of the image, respec-

tively. r represents the Euclidean distance between the point and
the image center, expressed as

r:¢@—gf+@—gf. 3)

After the distance weighting operation, the normalization op-
eration is conducted on the saliency maps.

Otsu method is a simple and efficient algorithm to convert
gray image into binary image with an adaptive threshold [38].
In this study, the adaptive binarization is implemented using
Otsu method to select the threshold and segment the saliency
maps into binary maps. A binary map is obtained in which the
regions with value 1 are salient while the regions with value 0
represent the background.

As the binary maps may include incoherent regions with small
sizes, the morphological closing operation is implemented on
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(c)

Fig. 2. Example of the rough salient region extraction. (a) Original image.
(b) Prior saliency map. (c¢) Binary map with the rough salient region.

the binary maps. In our experiment, the radius of the structuring
element in the morphological closing operation is empirically
set as 10 pixels. Accordingly, a complete rough salient region
is extracted. An example of the rough salient region extraction
is shown in Fig. 2. The prior saliency map in Fig. 2(b) is ob-
tained from the salient object detection method of RC [27]. The
extracted rough salient region is shown in Fig. 2(c).

B. Saliency Computation Based on Bayesian Decision Theory

Based on the Bayesian decision theory, the saliency computa-
tion can be formulated as estimating the posterior probability at
each pixel x in the image [39]. We can compute the prior prob-
ability and the observed conditional probability at each pixel x
of the image to generate the posterior probability distribution,
namely, the final saliency map.

To formalize the saliency computation of the proposed uni-
versal framework based on the Bayesian decision theory, let x
denote a pixel in the image, and the binary variable C' denote
whether or not a pixel belongs to the salient object. The formu-
lation of saliency computation for the universal framework is
expressed as follows:

S(x) = p(C=1|z)

p(C=1)p(z|C=1)
p(C=1)p|C=1)+p(C=0)p

(z|C = 0)
“4)

where C=1 denotes the pixel belonging to the salient ob-
ject, and C'= 0 denotes the pixel belonging to the background;
p(C=1|z) indicates the posterior probability at each pixel x in
the image; p(C' = 1) and p(C = 0) represent the prior proba-
bility of being salient or belonging to the background at each
pixel x, respectively. The relationship of these two compo-
nents is as follows: p(C = 0) = 1 — p(C = 1).p(z|C = 1) and
p(z|C = 0) indicate observed conditional probability distribu-
tion obtained from the rough salient region and the background
region, respectively.

Superpixel algorithms have been widely used to segment tex-
ture image into several regions. Among the superpixel algo-
rithms, SLIC [40] is an algorithm that can cluster pixels in the
combined 5-D color and image plane space to efficiently gen-
erate compact and nearly uniform superpixels with low com-
putational complexity. Moreover, it can obtain excellent bound-
ary adherence. SLICO, the zero parameter version of the SLIC
algorithm, can adaptively choose the compactness parameter
for each superpixel differently [40], [41]. In this study, we use
SLICO algorithm to segment the original image into several
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Fig. 3. Examples of prior probability distribution generation. (a) Original
image. (b) Superpixel map after SLICO segmentation. (c) Binary map with the
rough salient region. (d) Distribution map of prior probability.

regions. Examples for superpixels images after SLICO segmen-
tation are shown in Fig. 3(b).

With the superpixels and the extracted rough salient region,
we can compute the prior probability distribution. The rough
salient region is considered as the approximate position of the
salient object, and then the prior probability of each superpixel
can be measured by the number of pixels in the superpixel
belonging to the rough salient region. The prior probability of
saliency for pixels of each region is defined as

N (SPN RSR)

p(C=1)= N (SP)

&)

where SP represents a superpixel after superpixel segmen-
tation, and RSR denotes the rough salient region. Then
N(SP N RSR) indicates the number of pixels in a superpixel
belonging to the rough salient region, and N (S P) indicates the
whole number of pixels in the superpixel.

Through the above calculation, the prior probability distribu-
tion of saliency for pixels of each superpixel can be obtained
according to the degree with which the region overlapped with
the rough salient region. Examples of prior probability distribu-
tion generation are shown in Fig. 3. Fig. 3(c) shows binary maps
with the rough salient region extracted from the prior saliency
maps of RC. The prior probability distribution maps are shown
in Fig. 3(d).

We then compute the observed conditional probability utiliz-
ing the rough salient region. The saliency map can be divided
into two components: the rough salient region RSR and the
background region BK G. Intuitively, the pixels in RSR in-
cline to being salient while those in BKG are more likely to
belong to the background.

As CIELab color space is consistent with human visual per-
ception system, the input original color image in RGB color
space is transformed into the CIELab color space, in which
the luminance channel and the two chrominance channels are
well decorrelated [42]. The color features of the regions RSR
and BK G are calculated as three components L*, a* and b* for
each pixel x. The observed conditional probability for the region
RSR is computed as

Crsr (I (7))

plalC =1) = o ©

II

Ie{L*a*b*}
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and the observed conditional probability for the region BK G is
computed as

Cpra (I (v))

p(alC =0) = e

II

Te{L* a*,b*}

(7

where Crspr represents the count of pixels in region RSR,
and Cpp represents the count of pixels in region BKG.
Crsr(I(z)) indicates the region RSR containing the number
of pixels with the same color value of pixel z in I channel, while
Cpr¢(I(x))indicates the region BK G containing the number
of pixels with the same color value of pixel x in I channel.

In brief, we first compute the prior probability of a super-
pixel using (5). Then, the observed conditional probability is
computed according to (6) and (7). At last, the output saliency
map is generated based on the posterior probability computation
using the Bayesian decision theory [see (4)].

C. Iterative Optimization Process

To obtain better saliency results, we use the obtained saliency
map from (4) as the prior saliency map to generate the new
saliency map. An iterative optimization process is designed to
obtain more satisfying saliency maps.

For simplicity, the prior saliency map calculated from
a saliency detection method is expressed as I, and the out-
put saliency map from (4) is expressed as U M;,. The output
saliency map from the first iterative optimization process is ex-
pressed as U M7, the output saliency map of the second iterative
optimization process is expressed as U M5, and so on.

In the first iterative optimization process, the saliency maps I
and U M, are utilized to extract the new rough salient region. As
described in Section II-A, we successively conduct the steps of
distance weighting and adaptive binarization on saliency maps
Iy and U M, respectively. Thus, two binary maps are calculated
based on Iy and U M respectively. These two binary maps are
multiplied to extract their intersection, which can largely elim-
inate the regions that do not belong to the salient object. Ac-
cordingly, a more accurate rough salient region can be obtained.
Similarly, the morphological closing operation is implemented
on the above intersection to exclude the incoherent regions with
small sizes. The output saliency map of the first iterative opti-
mization process U M is then generated through saliency com-
putation based on the Bayesian decision theory. The overview
of the first iterative optimization process is expressed as Fig. 4.

In the second iterative optimization process, the saliency maps
Iy, UM, and U M are utilized to extract the rough salient re-
gion. Similar as the first iterative optimization process, three
binary maps are computed based on Iy, UM, and U M, respec-
tively through the steps of distance weighting and adaptive bina-
rization. These three binary maps are multiplied to extract their
intersection. The morphological closing operation is conducted
to the intersection region to obtain the new rough salient region.
Based on the updated rough salient region, the output saliency
map of the second iterative optimization process U My is then
generated through computing saliency based on the Bayesian
decision theory.
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Similarly, the next optimization iterations are continually con-
ducted with the previous iterative optimization results. The per-
formance of the output saliency map can be improved as the
iterative optimization process is carried on. Iterative optimiza-
tion processes will be continued until the saliency results are
stable.

A termination strategy is designed for the iterative optimiza-
tion process to obtain the final saliency map. The judgment
criterion of the strategy takes the average difference between
the pixel values of the output saliency maps. When the differ-
ence between the output saliency map of the current iterative
process and that of the previous iteration reaches to a certain
degree, the iterative optimization process will stop. Then the
output saliency map of the last iteration is considered as the
final saliency map, which is expressed as U M.

The judgment criterion of the termination strategy for the
iterative optimization process can be formulated as follows:

w h

1
Ts=—7 |2

r=1y=

‘U]\/fm (x,y) - U«hfmfl (xay)l (8)
1

where T'S is the average difference of pixel values; U M,, (x,y)
and UM, _1 (x,y) denote the values of the saliency maps from
the mth and (m-1)th iterative optimization processes, respec-
tively; w and h represent the width and height of the saliency
map, respectively.

The average difference of pixel values, 7'S, is computed after
the output saliency maps are obtained for each iterative opti-
mization process. If the average difference of pixel values is
less than a given threshold 7', the iterative optimization process
will stop. Furthermore, for the case of non-convergence, the it-
erative process will stop when the maximum number of iteration
M is reached, even though the average difference does not reach
the given threshold. Visual samples of our universal framework
are shown in Fig. 5. As shown in Fig. 5(d), the rough salient
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(a) (b) (c) (d) (e) 0

Fig. 5. Visual samples from the proposed universal framework. (a) Original
image. (b) Ground truth. (c) Original input saliency map of RC. (d) Binary
map with the rough salient region. (e) The output saliency map of the proposed
universal framework. (f) Saliency map after the iterative optimization process.

region of RC is extracted based on the prior saliency map using
some operations, including distance weighting, adaptive bina-
rization, and morphological closing operation. The performance
is significantly improved after saliency computation based on
Bayesian decision theory, as shown in Fig. 5(e). Through the
iterative optimization process, more accurate and intact salient
regions are obtained, as shown in Fig. 5(f).

III. EXPERIMENTAL RESULTS

We have evaluated the results of the proposed method on
the publicly available dataset MSRA-1000 [21] including 1000
natural images with their corresponding ground truth masks
produced by human-marked labeling for salient objects, and a
more complex dataset, ECSSD [43], with 1000 images and the
corresponding ground truth masks.

A. Performance Evaluation of the Proposed Universal
Framework

We first test the proposed universal framework on the salient
object dataset MSRA-1000. Several state-of-the-art approaches,
including SR [32], FT [21], LC [44], HC [27], RC [27], SF [30],
and PCA [45] are used to conduct the comparison experiment
in this study.

In our experiment, the image is segmented into 30 regions
in advance by SLICO algorithm for our universal framework.
For several state-of-the-art methods, including SR, FT, LC, HC,
RC, and SF, we compare the saliency maps with and without
the implementation of the proposed universal framework.

We provide some visual samples in Fig. 6, in which both
saliency maps Iy and UM, from these state-of-the-art meth-
ods and the proposed universal framework are shown for visual
comparison. From the visual comparison, we can see that the
performance of the saliency maps obtained from all these six
state-of-the-art methods has been improved after the implemen-
tation of the proposed universal framework.

In order to objectively evaluate the performance of the pro-
posed universal framework, the measures of precision and
recall are used for comparison, similar as previous works. The
precision-recall curves are also provided, in which higher pre-
cision values and recall values indicate better performance with
fixed threshold value to the saliency map. The precision and
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(a)

Fig. 6.
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Visual samples of salient object detection results. (a) Input original images and corresponding ground truths. (b)—(g) The saliency maps from different

methods and their corresponding saliency maps from the proposed universal framework for (b) SR, (c¢) FT, (d) LC, (e) HC, (f) RC, and (g) SF.

recall values are defined as

S SNG

precision = S——— )

S
>SNG
G

where S denotes the binary saliency pixels, G denotes the
ground truth pixels and ¥ refers to the sum of all pixels. We
use a series of fixed integer thresholds from O to 255 to obtain
256 binary salient object masks for each saliency map. With
each threshold, the precision and recall values are averaged,
and the precision-recall curve plots the average precision values
against the average recall values as shown in Fig. 7.

It can be seen from Fig. 7 that the precision-recall curves of
the results after the implementation of our universal framework
is much higher than those from the original saliency maps of
the six state-of-the-art methods. Accordingly, we can conclude
that the quality of the saliency maps after processing of the
proposed universal framework is generally quite better than that
of the original saliency maps obtained from the six state-of-the-
art methods.

In addition, we further utilize the F-measure to objectively
evaluate the quality of the proposed universal framework, which
is defined as

recall = (10)

(1 + [7’2) - precision - recall

Fz=
A (32 - precision + recall

an

where (32 is set to 0.3 in our experiments to weight precision
more than recall as suggested in [21], and we use the image
saliency dependent adaptive threshold proposed by [21] to gen-
erate binary maps of salient object from saliency maps.

Fig. 8 shows the precision, recall, and F-measure of the
results of the seven state-of-the-art methods and correspond-
ing results after processing of our universal framework on
MSRA-1000 dataset. It is obvious that the F-measure and re-
call values increase after the implementation of the proposed
universal framework for all seven existing methods. High re-
call indicates that it benefits for salient object segmentation
after implementation of the universal framework. Please note
that the precision does not increase after implementation of
the universal framework for SF, but the recall and F-measure
values are both much higher than those from the original
methods.

In addition, we use a more complex dataset ECSSD with 1000
images and the corresponding ground truth masks to further
evaluate the performance of the proposed universal framework.
Fig. 9 shows the precision, recall, and F-measure of several
existing saliency detection methods and corresponding results
with the proposed universal framework on ECSSD dataset. It
can be observed form the figure that the precision, recall, and
F-measure values are all improved after the implementation of
the proposed universal framework.

Considering the flaws of the above evaluation measures,
we further use the weighted F'y’-measure [46] to evaluate the
proposed universal framework. The weighted Fy’-measure is
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Fig. 7. Precision-recall curves generated using original saliency maps of six state-of-the-art methods and their corresponding saliency maps with the implemen-

tation of the universal framework. Results for (a) SR, (b) FT, (c) LC, (d) HC, (e) RC, and (f) SF.
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Fig. 8. Precision, recall, and F-measure results achieved by using original

saliency maps of several existing saliency detection methods and those corre-
sponding saliency maps after the implementation of the universal framework on
MSRA-1000 dataset.

defined as

(1 + 62) - precision™ - recall”

(32 - precision® + recall”

By = (12)
The results are shown in Figs. 10 and 11 for MSRA-1000
dataset and ECSSD dataset, respectively. It can be observed
from the figures that the F}j’-measure values increase with the
proposed universal framework.
Overall, the proposed universal framework is able to improve
the performance of existing salient detection methods.
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Fig. 9. Precision, recall, and F-measure results achieved by using original

saliency maps of several existing saliency detection methods and those corre-
sponding saliency maps after the implementation of the universal framework on
ECSSD dataset.

B. Performance Evaluation of the Proposed Iterative
Optimization Process

In order to evaluate the performance of the proposed iterative
optimization process, the iterative optimizations with different
times are implemented for the seven state-of-the-art methods
under the termination strategy. The experiments are conducted
on the basis of the results from our model, U M, and terminated
after obtaining the final saliency maps, UMp. The threshold
of the termination strategy 7' is set to 1 by considering both
the computational complexity and the performance of saliency
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Fig. 10. Weighted F'y’ -measure results achieved by using original saliency
maps of several existirig saliency detection methods and those corresponding
saliency maps after the implementation of the universal framework on MSRA-
1000 dataset.
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Fig. 11. Weighted F'y’ -measure results achieved by using original saliency
maps of several existing saliency detection methods and those corresponding
saliency maps after the implementation of the universal framework on ECSSD
dataset.

maps. The maximum number of iteration M is set to 6. In order
to ensure the overall performance, the first three iterations are
conducted necessarily. In the experiments, most saliency detec-
tion methods can obtain the final saliency maps with three times
of iterative optimization process.

We provide some visual samples of the results from the seven
state-of-the-art methods in Figs. 12 and 13. It can be seen from
Fig. 12 that the performance of the saliency maps is better and
better after each iterative optimization process, which demon-
strates that the iterative optimization process of our univer-
sal framework is able to further improve the performance of
saliency maps obtained from other saliency detection methods.

In addition, we further utilize the F-measure to objectively
evaluate the performance of the proposed iterative optimiza-
tion process. As shown in Fig. 14, the F-measure values of
each iterative optimization process for the seven state-of-the-art
saliency detection methods are plotted in the light of corre-
sponding saliency maps. We can see from the figure that the
F-measure values are much higher at the initial stage of the
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Fig. 12.  Visual comparison of some results from the proposed iterative opti-
mization process for seven state-of-the-art methods. (a) Input original images.
(b) Ground truths. (c) Input original saliency maps of the seven state-of-the-
art methods. (d) Saliency maps U M after implementation of our universal
framework. (e) Saliency maps U M after the first iterative optimization pro-
cess. (f) Saliency maps U M> after the second iterative optimization process.
(g) Saliency maps U M after the last iterative optimization process.

iterative optimization process and incline to be slightly improved
or stable as the iterative optimization process continues.

For input images whose initial saliency map UM, is sat-
isfactory enough, there is no much performance improvement
from the next iterative optimization processes of the proposed
universal framework, as shown in Fig. 13. It can be seen from
the Fig. 13(b)—(d) that the saliency map from universal frame-
work is much better than the original saliency map. However,
there is no much improvement for the saliency results with the
iterative optimization operation compared with those without
iterative optimization operation. From all the saliency results in
Fig. 13, we can see that the performance of the output saliency
maps tends to be stable as the iterative optimization process
continues.

C. Detailed Analysis

In this section, we first give a detailed analysis to show how
the proposed framework improves a bad result from the origi-
nal saliency map. The detailed results from the proposed uni-
versal framework for SR are shown in Fig. 15. As shown in
Fig. 15(c), there are blurred boundaries and incomplete details
in the original saliency map of SR. However, the result is sig-
nificantly improved with the proposed universal framework, as
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Fig. 13.  Visual samples of saliency results from the proposed iterative opti-
mization process for seven state-of-the-art methods. (a) Input original images.
(b) Ground truths. (c) Input original saliency maps of the seven state-of-the-
art methods. (d) Saliency maps U M after implementation of our universal
framework. (e) Saliency maps U M7 after the first iterative optimization pro-
cess. (f) Saliency maps U M> after the second iterative optimization process.
(g) Saliency maps U M after the last iterative optimization process.
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Fig. 14.  F-measure values achieved by using original saliency maps of seven
state-of-the-art methods and those corresponding saliency maps after the imple-
mentation of iterative optimization process of the universal framework.

shown in Fig. 15(i). Through the distance weighting, adaptive
binarization, and morphological closing operations, the rough
salient regions become more accurate and intact, as shown in
Fig. 15(e). The prior probability is computed based on the rough
saliency map [see Fig. 15(e)] and the segmented superpixels
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(g) (h) (i)

Fig. 15. Details of the proposed universal framework for the initial saliency
map of SR. (a) Original image. (b) Ground truth. (c) Original input saliency
map of SR. (d) Binary map after distance weighting and adaptive binarization.
(e) Binary map after morphological closing operation. (f) Superpixel map. (g)
Prior probability map. (h) Prior probability map with labels. (i) The output
saliency map of the proposed universal framework.

[see Fig. 15(f)]. If a superpixel contains more salient pixels,
the superpixel will have a higher prior probability, as shown in
Fig. 15(g) and (h). For example, the prior probabilities of the two
superpixels marked with yellow lines in Fig. 15(h) are 0.7531
and 1, respectively. Similarly, the salient regions near the image
boundary achieve a non-zero prior probability value by SLICO
method and the rough salient regions. For example, the prior
probabilities of the two superpixels marked with magenta lines
in Fig. 15(h) are 0.1687, and 0.0576, respectively. However,
the superpixel segmentation results from SLICO method may
not always be satisfactory. In some cases, the extraction of the
salient object contour is not accurate, and some background re-
gions are incorrectly included in salient regions. For example,
the two superpixels marked with red lines in Fig. 15(h) do not
have good superpixel contour, resulting in false prior probabili-
ties (with values of 0.3045 and 0.1481, respectively).

In addition, the observed conditional probability by using the
rough salient region and the number of pixels in color space
also plays an important role in the proposed framework. Since
the observed conditional probabilities are with the ability to dis-
tinguish the color difference between different regions, it can
eliminate the errors in prior probability map. After the com-
putation based on the Bayesian decision framework, the right
superpixel marked with the red line is almost completely sup-
pressed, and the left superpixel marked with the red line is
also largely suppressed. Most of those regions should be distin-
guished from the salient object. Furthermore, the output saliency
map is improved through the iterative optimization process. All
of these operations guarantee that our framework can improve
the performance of the existing saliency detection method.

In a word, for the bad results from the original input saliency
maps, several components of the proposed framework play
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Fig. 16.  Visual samples where the salient object is away from the center of
the image. (a) Original images. (b) Ground truths. (c) Original input saliency
maps. (d) Saliency maps of our method.

important roles to obtain the good saliency results, including
the rough salient region extraction, SLICO segmentation, and
the observed conditional probability.

We also conduct an exhaustive experiment with the salient
regions away from the image center, as shown in Fig. 16. From
the figure, it can be observed that the proposed universal frame-
work can achieve a more accurate result no matter whether the
salient object is located near the center of the image or not. It
indicates that our universal framework is robust to the spatial
position of salient objects.

Furthermore, we analyze the influence of morphological clos-
ing, and the experimental results are shown in Fig. 17. From
these results, it can be observed that the performance with mor-
phological closing is improved obviously. It is reasonable to
introduce morphological closing in the proposed framework.
Meanwhile, the effects with different radiuses (5, 10, 15, and
20) are tested in the comparative experiments. Considering that
the performance is not sensitive to the radius, we empirically
set the value of radius to be 10.

D. Computational Complexity and Discussions

To demonstrate the efficiency of the proposed method,
we conduct the experiments of computational complexity by
using the existing saliency detection methods and the pro-
posed universal framework as well as the iterative optimization
process. The experiments are performed on a Quad Core
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TABLE I
COMPUTATIONAL COMPLEXITY ANALYSIS
BASED ON THE AVERAGE RUNNING TIME

Time(s) SR FT LC HC RC SF PCA
Iy 0.003  0.025 0.004 0.116 0971 N/A 1.885
UM, 0318 0329 0338 0340 0334 0328 0.324
UM, 0.342  0.371 0365 0359 0374 0353  0.364
UM, 0.378  0.409 0405 0.411 0403 0412 0405

The row of [, indicates the average time taken by each existing saliency
detection method. The row of U M, indicates the average time taken by
proposed universal framework. The row of U M indicates the average time
taken by the first iterative optimization process. The row of U M indicates
the average time taken by the second iterative optimization process.

3.7 GHz machine with 16 GB RAM. SR [32], FT [21], LC
[44], HC [27], and RC [27], are implemented in C++. For SF
[30], we do not provide its computational complexity since
we could not get the source code of this model. However,
the authors of SF indicate that the computational complex-
ity of SF is similar to that of RC in [30]. PCA [45], the
proposed universal framework and the iterative optimization
process are implemented in Matlab. We provide the compu-
tational complexity of different models in Table I. It can be
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observed from the table that the computational complexity of the
proposed universal framework is low. The time cost of the pro-
posed framework is less than 0.5 second to process one image
at each iteration. In particular, under the same platform and
computational environment, the total time cost with three times
of iteration by the proposed framework is even less than that
of PCA. In addition, the running time of the proposed frame-
work through three iterations is almost the same with RC, even
though the proposed framework is implemented in Matlab and
RC is implemented in C++. However, it is worthwhile to men-
tion that, the proposed framework may lead to more than three
iterations to converge.

Different from existing saliency detection studies which aim
to design a new method for saliency detection, we propose a
universal framework to improve the performance of any exist-
ing saliency detection model. The rough saliency map obtained
from existing saliency detection model is regarded as the prior
knowledge, and a Bayesian decision model is built to compute
a more accurate saliency map for the image. Furthermore, an
iterative optimization process is designed to calculate a better
saliency map at each time. It is worthwhile to mention that, our
work is a primary attempt to improve the existing saliency map,
and the proposed framework is an open system where other ex-
isting methods can be included easily. In the future, we would
like to optimize the proposed framework by updating the oper-
ations including segmentation, rough salient region extraction,
and iterative optimization mechanism.

IV. CONCLUSION

In this paper, we have presented a universal framework for
salient object detection, which can be used to improve the per-
formance of existing saliency detection methods. The proposed
universal framework uses the saliency map of any saliency de-
tection method to extract a rough salient region, and compute a
more accurate saliency map based on this rough salient region
under Bayesian decision theory. An iterative optimization pro-
cess is designed to exploit the output saliency map with more
accurate rough salient region. Extensive experimental results
on the public salient object detection datasets demonstrate the
promising performance of the proposed universal framework
subjectively and objectively.
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